DRL26C樹木生長測量儀
- 公司名稱 北京易科泰生態(tài)技術(shù)有限公司
- 品牌 其他品牌
- 型號
- 產(chǎn)地
- 廠商性質(zhì) 代理商
- 更新時(shí)間 2023/2/27 10:20:55
- 訪問次數(shù) 5494
聯(lián)系方式:文老師18210150760 查看聯(lián)系方式
聯(lián)系我們時(shí)請說明是化工儀器網(wǎng)上看到的信息,謝謝!
土壤與植物生理生態(tài)研究監(jiān)測、環(huán)境氣象監(jiān)測、水文水質(zhì)及地下水監(jiān)測、水土保持研究監(jiān)測、荒漠化監(jiān)測、精準(zhǔn)農(nóng)業(yè)以及動物生態(tài)研究等儀器技術(shù)的引進(jìn)推廣和系統(tǒng)集成,并為生態(tài)環(huán)境實(shí)驗(yàn)研究和規(guī)劃設(shè)計(jì)提供技術(shù)方案和分析測量。
產(chǎn)地類別 | 進(jìn)口 | 應(yīng)用領(lǐng)域 | 環(huán)保,農(nóng)業(yè) |
---|
DRL26C 樹木生長監(jiān)測儀用于監(jiān)測樹干的生長微變化,使樹的生長與水分關(guān)系的研究變得更容易和更準(zhǔn)確。傳感器為不銹鋼和防紫外線塑料制作,堅(jiān)固耐用,適合長期監(jiān)測,無須外接電池或太陽能板,內(nèi)置鋰電池和數(shù)據(jù)采集器,可記錄50000個數(shù)據(jù),通過紅外數(shù)據(jù)輸出。儀器具有較高的分辨率,可精確測量1微米莖桿的微變化,為研究樹木在白天,夜晚等氣候條件差異下的生長提供重要數(shù)據(jù)依據(jù)。
主要優(yōu)點(diǎn):
適用于直徑大于8cm的任何樹干;
傳統(tǒng)機(jī)械與電子技術(shù)相結(jié)合,測量更準(zhǔn)確;
精度較高,分辨率1微米;
無損安裝固定;
導(dǎo)出數(shù)據(jù)格式為TXT、Excel
技術(shù)參數(shù):
量程:64mm生長量變化監(jiān)測
分辨率:0.001mm
誤差:量程2%
作用力:15-20N
工作溫度:-30-60℃
工作濕度:0-100%
溫度傳感器精度:±2℃
重量:300g
數(shù)據(jù)容量:50000個數(shù)據(jù)(每小時(shí)記錄1次則可自動記錄4年)
采樣間隔:10min-24hrs
電池壽命:1hr間隔5年;10mins間隔3年;待機(jī)5.5年
通訊方式:無線紅外傳輸
植物生理生態(tài)專業(yè)數(shù)據(jù)下載分析軟件,可進(jìn)行數(shù)據(jù)下載、數(shù)據(jù)在線觀測、柱狀圖、數(shù)據(jù)修復(fù)、統(tǒng)計(jì)分析(如每小時(shí)平均、每日平均、總計(jì)、最小值、最大值、數(shù)據(jù)相關(guān)分析、回歸分析)與圖表展示及系統(tǒng)設(shè)置等
可選配MicroLog三通道土壤監(jiān)測儀,實(shí)時(shí)、連續(xù)、原位監(jiān)測土壤水分、溫度、水勢的變化
推薦系統(tǒng):樹木生理生態(tài)系統(tǒng),同時(shí)對多棵樹木進(jìn)行實(shí)時(shí)在線監(jiān)測,采集記錄樹木生長、樹皮溫度(陰面和陽面)、樹干莖流等三個生理指標(biāo)的數(shù)據(jù)
產(chǎn)地:捷克
參考文獻(xiàn)
1.Augustaitis, A. (2021). Intra-Annual Variation of Stem Circumference of Tree Species Prevailing in Hemi-Boreal Forest on Hourly Scale in Relation to Meteorology, Solar Radiation and Surface Ozone Fluxes. Atmosphere 12, 1017.
2.Bu?ková, R., Acosta, M., Da?enová, E., Pokorny, R., and Pavelka, M. (2015). Environmental factors influencing the relationship between stem CO2 efflux and sap flow. Trees 29, 333–343.
3.Dolezal, J., Kopecky, M., Dvorsky, M., Macek, M., Rehakova, K., Capkova, K., Borovec, J., Schweingruber, F., Liancourt, P., and Altman, J. (2019). Sink limitation of plant growth determines tree line in the arid Himalayas. Functional Ecology 33, 553–565.
4.Forner, A., Valladares, F., Bonal, D., Granier, A., Grossiord, C., and Aranda, I. (2018). Extreme droughts affecting Mediterranean tree species’ growth and water-use efficiency: the importance of timing. Tree Physiology 38, 1127–1137.
5.Jamnická, G., Kon?pková, A., Fleischer, P., Kurjak, D., Petrík, P., Petek-Petrik, A., Húdoková, H., Homolová, Z., Je?ík, M., and Ditmarová, ?. (2020). Physiological vitality of Norway spruce (Picea abies L.) stands along an altitudinal gradient in Tatra National Park. Central European Forestry Journal 66.
6.Je?ík, M., Bla?enec, M., Mezei, P., Sedmáková, D., Sedmák, R., Fleischer, P., Fleischer, P., Bo?e?a, M., Kurjak, D., St?elcová, K., et al. (2021). Influence of weather and day length on intra-seasonal growth of Norway spruce (Picea abies) and European beech (Fagus sylvatica) in a natural montane forest. Can. J. For. Res. 51, 1799–1810.
7.Le?tianska, A., Fleischer, P., Mergani?ová, K., Fleischer, P., and St?elcová, K. (2020a). Influence of Warmer and Drier Environmental Conditions on Species-Specific Stem Circumference Dynamics and Water Status of Conifers in Submontane Zone of Central Slovakia. Water 12, 2945.
8.Le?tianska, A., Fleischer, P., Fleischer, P., Mergani?ová, K., and St?elcová, K. (2020b). Interspecific variation in growth and tree water status of conifers under water-limited conditions. Journal of Hydrology and Hydromechanics 68, 368–381.
9.Maicher, V., Sáfián, S., Murkwe, M., Delabye, S., Przyby?owicz, ?., Potocky, P., Kobe, I.N., Jane?ek, ?., Mertens, J.E.J., Fokam, E.B., et al. (2020). Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. Journal of Biogeography 47, 342–354.
10.Nalevanková, P., Je?ík, M., Sitková, Z., Vido, J., Le?tianska, A., and St?elcová, K. (2018). Drought and irrigation affect transpiration rate and morning tree water status of a mature European beech (Fagus sylvatica L.) forest in Central Europe. Ecohydrology 11, e1958.
11.Obojes, N., Meurer, A., Newesely, C., Tasser, E., Oberhuber, W., Mayr, S., and Tappeiner, U. (2018). Water stress limits transpiration and growth of European larch up to the lower subalpine belt in an inner‐alpine dry valley. The New Phytologist 220, 460.
12.Qian-Wen, J.I., Cheng-Yang, Z., Lei, Z., and Fa-Xu, Z. (2020). Stem radial growth dynamics of Pinus sylvestris var. mongolica and their relationship with meteorological factor in Saihanba, Hebei, China. Chinese Journal of Plant Ecology 44, 257.
13.Raffelsbauer, V., Spannl, S., Pe?a, K., Pucha-Cofrep, D., Steppe, K., and Br?uning, A. (2019). Tree Circumference Changes and Species-Specific Growth Recovery After Extreme Dry Events in a Montane Rainforest in Southern Ecuador. Frontiers in Plant Science 10.
14.?eháková, K., ?apková, K., Altman, J., Dan?ák, M., Majesky, ?., and Dole?al, J. (2021). Contrasting Patterns of Soil Chemistry and Vegetation Cover Determine Diversity Changes of Soil Phototrophs Along an Afrotropical Elevation Gradient. Ecosystems 1–17.
15.Szymczak, S., H?usser, M., Garel, E., Santoni, S., Huneau, F., Knerr, I., Trachte, K., Bendix, J., and Br?uning, A. (2020). How Do Mediterranean Pine Trees Respond to Drought and Precipitation Events along an Elevation Gradient? Forests 11, 758.
16.Vospernik, S., Nothdurft, A., and Meht?talo, L. (2020). Seasonal, medium-term and daily patterns of tree diameter growth in response to climate. Forestry: An International Journal of Forest Research 93, 133–149.
17.Winters, G., Otieno, D., Cohen, S., Bogner, C., Ragowloski, G., Paudel, I., and Klein, T. (2018). Tree growth and water-use in hyper-arid Acacia occurs during the hottest and driest season. Oecologia 188, 695–705.