產(chǎn)品分類品牌分類
-
數(shù)字式雙鉗相位伏安表 斷路器特性測試儀 手持式直流電阻測試儀 路燈電纜故障測試儀 電纜扎傷器 電纜外護套故障定位儀 電纜護套故障測試儀 電纜識別儀 電纜故障模擬系統(tǒng) 電纜故障測試儀 帶電電纜識別儀 絕緣子芯棒泄漏電流試驗裝置 直流開關(guān)安秒特性測試儀 高壓開關(guān)動特性測試儀 絕緣手套耐壓試驗裝置 ZSL83系列 智能大電流發(fā)生器 大電流發(fā)生器 ZYD系列 智能耐壓試驗裝置 工頻耐壓試驗裝置 氧化鋅避雷器帶電測試儀 回路電阻測試儀 三相相位伏安表(1200V) 三相繼電保護測試儀 六相繼電保護測試儀 SMG3000三相相位伏安表 03伏安表 SF6微水儀 SF6密度繼電器校驗儀 SF6檢漏儀 SF6回收裝置 SF6抽真空裝置 智能型雙向臺區(qū)識別儀 有線氧化鋅 氧化鋅避雷器測試儀 輸電線路工頻參數(shù)測試儀 手持用電檢查儀 手持矢量分析儀 三相電容電感測試儀 三相電能表現(xiàn)場校驗儀 三相不平衡度測試儀 繼電保護測試儀 計量裝置綜合測試系統(tǒng)(一拖二) 戶表接線測試儀 高壓CT變比測試儀 二次壓降負荷測試儀 電能質(zhì)量分析儀 電流互感器現(xiàn)場校驗儀 單相手持電能表校驗儀 標(biāo)準表 七寸彩屏0.1級 變壓器空負載測試儀 手持式變比測試儀 便攜式變比測試儀 變壓器變比測試儀 數(shù)字化電能表 XW-8002A(2MHZ)阻抗法三項+頻響法單相二合一繞組變形 XW-3000消磁機 XW-1168多功能高空接線鉗(常規(guī)) 雷擊計數(shù)器測試儀 單相電容電感測試儀(10A) 變比測試儀 100A回路電阻測試儀 10A直流電阻測試儀(B型) 5A接地導(dǎo)通測試儀 自動水溶性酸測定儀 振蕩儀 張力 油耐壓 微水儀 閃點儀 全自動石油產(chǎn)品回流法酸值測定儀 清洗機 絕緣油介質(zhì)損耗及電阻率測試儀 回流法自動酸值 萃取法酸值 便攜式油耐壓儀校準裝置 SF6氣體微量水分測定儀 SF6氣體密度校驗儀 SF6分解產(chǎn)物 SF6純度分析儀 直阻儀 直阻電橋(電池供電) 三通道直阻儀(帶助磁 逐項單項 20A 10A) 三通道直阻儀(20A) 空負載 絕緣油介電強度測試儀 介損儀 接地線成組直流電阻測試儀 接地導(dǎo)通儀 回路儀(200A 100A) 短路阻抗儀 變比新款 變比六柱
-
線路參數(shù)測試儀 電流互感器變比極性測試儀 直流電阻測試儀 回路電阻測試儀 變壓器變比測試儀 接地導(dǎo)通測試儀 變壓器短路阻抗測試儀 高壓開關(guān)綜合測試儀 有載分接開關(guān)測試儀 發(fā)電機交流阻抗測試儀 多功能高空接線鉗 全自動變壓器消磁機 變壓器繞組變形頻響 繼電保護測試儀 三相相位伏安表 變壓器容量測試儀 數(shù)字式絕緣電阻表 絕緣電阻測試儀 變壓器空負載損耗測試儀 多功能電能表現(xiàn)校檢儀 單相電能表現(xiàn)場校檢儀 互感器現(xiàn)場校檢儀 電能質(zhì)量分析儀 單相手持電能表校驗儀 二次壓降負荷測試儀 高壓CT變比測試儀 戶表接線測試儀 計量裝置綜合測試系統(tǒng) 三相電壓電流不平衡度 油壓分離式穿孔工具 電容電感測試儀 避雷器在線測試儀 直流高壓發(fā)生器 PJ變頻介質(zhì)損耗測試儀 PJ大地網(wǎng)接地電阻測試儀 PJ氧化鋅避雷器帶電測試儀 PJ全自動電容電感測試儀 PJ絕緣電阻測試儀 PJ水內(nèi)冷絕緣電阻測試儀 PJ全自動放電計數(shù)器校驗儀 PJ電容式電壓互感器 PJ過電壓保護器
普景:電力電纜故障探測培訓(xùn)教程-基礎(chǔ)理論(2
電力電纜故障探測基礎(chǔ)理論(2)
三、電纜故障的性質(zhì)與分類
電纜故障從型式上可分為串聯(lián)與并聯(lián)故障。串聯(lián)故障指電纜一個或多個導(dǎo)體(包括鉛、鋁外皮)斷開;通常在電纜至少一個導(dǎo)體斷路之前,串聯(lián)故障是不容易發(fā)現(xiàn)的。并聯(lián)故障是導(dǎo)體對外皮或?qū)w之間的絕緣下降,不能承受正常運行電壓。實際的故障型式組合是很多的,圖1給出了可能性較大的幾種故障形式。例如:圖1.c所示,導(dǎo)體斷路往往是電纜故障電流過大而燒斷的,這種故障一般伴有并聯(lián)接地或相間絕緣下降的情況。實際發(fā)生的故障絕大部分是單相對地絕緣下降故障。(不同的電纜故障測試儀器廠家,對故障的分類有所區(qū)別)。
圖1 幾種電纜故障形式
電纜故障點可用圖2所示電路來等效。Rf代表絕緣電阻,G是擊穿電壓為Vg的擊穿間隙,Cf代表局部分布電容,上述三個數(shù)值隨不同的故障情況變化很大,并且互相之間并沒有必然的。
圖2 電纜故障等效電路
間隙擊穿電壓Vg的大小取決于放電通道的距離,電阻Rf的大小取決于電纜介質(zhì)的碳化程度,而電容Cf的大小取決于故障點受潮的程度,數(shù)值很小,一般可以忽略。
根據(jù)故障電阻與擊穿間隙情況,電纜故障可分為開路、低阻、高阻與閃絡(luò)性故障,如表1所示。
表1 電纜故障性質(zhì)的分類
說明:表中Z0為電纜的波阻抗值,電力電纜波阻抗一般在10-40Ω之間。
以上分類的目的也是為了選擇測試方法的方便,根據(jù)目前流行的故障測距技術(shù),開路與低阻故障可用低壓脈沖反射法,高阻故障要用沖擊閃絡(luò)法測試,而閃絡(luò)性故障可用直流閃絡(luò)法測試。現(xiàn)場人員有把Rf<100KΩ的故障稱為低阻故障的習(xí)慣,主要是因為傳統(tǒng)的電橋法可以測量這類故障。智能型電纜故障閃測儀,Rf<1KΩ以下的故障,也就是用萬用表能夠直接測量出來絕緣電阻的故障,才可以稱為低阻故障。高壓搖表測試電阻為零,可能還是高阻故障。
據(jù)統(tǒng)計,高阻及閃絡(luò)性故障約占整個電纜故障總數(shù)的90%以上。現(xiàn)場是通過試驗方法區(qū)分高阻與閃絡(luò)性故障的。
圖3給出了電纜耐壓試驗等效電路,其中Rs為試驗設(shè)備內(nèi)阻,E為設(shè)備所能提供的直流電壓值,電阻Rf與臨界擊穿電壓為Vg的間隙并聯(lián)代表故障點。
圖3 電纜耐壓試驗等效電路
由圖3可知,在對電纜進行高壓絕緣試驗時,電纜故障點所能獲得的電壓為:
對閃絡(luò)性故障來說Rf較大,故障間隙兩端電壓可以增加至很高,當(dāng)試驗電壓升至某一值時,故障點擊穿放電,電流突然升高,電壓突然下降。預(yù)防性試驗中發(fā)生的故障多屬閃絡(luò)性故障。
高阻故障的故障點電阻Rf較?。ǖ?/span>于10Z0,電纜特性阻抗的10倍),導(dǎo)致故障點兩端所加電壓不能升至高于故障點擊穿電壓,也就不能使故障點擊穿。因此,可以從在對電纜進行高壓絕緣試驗時有*點擊穿現(xiàn)象判斷電纜存在高阻還是閃絡(luò)性故障。顯然,高阻與閃絡(luò)性故障的區(qū)分不是的,它與高壓試驗設(shè)備的容量或試驗設(shè)備的內(nèi)阻等因素有關(guān)。
實際上還存在一種封閉性故障,它多發(fā)生于電纜接頭或終端頭內(nèi),特別是多發(fā)生在浸油的電纜頭內(nèi)。發(fā)生這類故障時,有時在某一試驗電壓下絕緣擊穿,待絕緣恢復(fù),擊穿現(xiàn)象便*消失,這類故障稱為封閉性故障,因故障不能再現(xiàn),尋找起來就比較困難。
四、電纜故障探測的步驟
電纜故障的探測一般要經(jīng)過診斷、測距、定點三個步驟。
1. 電纜故障性質(zhì)診斷
電纜故障性質(zhì)的診斷,即確定故障的類型與嚴重程度,以便于測試人員對癥下藥,選擇適當(dāng)?shù)碾娎|故障測距與定點方法。
2. 電纜故障測距
電纜故障測距,又叫粗測,在電纜的一端使用儀器確定故障距離,測試現(xiàn)場常用的故障測距方法有:古典電橋法(高壓電橋、低壓電橋)與現(xiàn)代行波法(脈沖法:低壓脈沖法,高壓脈沖法)。
3. 電纜故障定點
電纜故障定點,又叫精測,即按照故障測距結(jié)果,根據(jù)電纜的路徑走向,找出故障點的大體方位來,在一個很小的范圍內(nèi),利用放電聲測法或其它方法確定故障點的準確位置。
一般來說,成功的電纜故障探測都要經(jīng)過以上三個步驟,否則欲速則不達。例如不進行故障測距而利用放電聲測法直接定點,沿著很長的電纜路徑(可能有數(shù)公里長),探測故障點放電聲是相當(dāng)困難的。如果已知電纜故障距離,確定出一個大體方位來,在很小的一個范圍內(nèi)(10米左右)來回移動定點儀器探測電纜故障點放電聲,就容易多了。
五、電纜故障性質(zhì)的診斷
所謂診斷電纜故障的性質(zhì),就是指確定:故障電阻是高阻還是低阻;是閃絡(luò)還是封閉性故障;是接地、短路、斷線,還是它們的混合;是單相、兩相,還是三相故障。
可以根據(jù)故障發(fā)生時出現(xiàn)的現(xiàn)象,初步判斷故障的性質(zhì)。例如,運行中的電纜發(fā)生故障時,若只是給了接地信號,則有可能是單相接地的故障。繼電保護過流繼電器動作,出現(xiàn)跳閘現(xiàn)象,則此時可能發(fā)生了電纜兩相或三相短路或接地故障,或者是發(fā)生了短路與接地混合故障。發(fā)生這些故障時,短路或接地電流燒斷電纜將形成斷線故障。但通過上述判斷不能*將故障的性質(zhì)確定下來,還必須測量絕緣電阻和進行“導(dǎo)通試驗”。
測量絕緣電阻時,使用兆歐表(1千伏以下的電纜,用1000伏的兆歐表;1千伏以上的電纜,用2500伏的兆歐表)來測量電纜線芯之間和線芯對地的絕緣電阻;進行“導(dǎo)通試驗”時,將電纜的末端三相短接,用萬用表在電纜的首端測量芯線之間的電阻?,F(xiàn)將一故障電纜的測量結(jié)果列于表2中,供參考。
根據(jù)表2所列絕緣電阻之測量結(jié)果,可以分析出此故障是兩相接地;根據(jù)“導(dǎo)通試驗”結(jié)果,以確定三相電纜未發(fā)生斷線。此故障點的狀態(tài),如圖4所示。
表2 絕緣電阻的測量與“導(dǎo)通試驗”
圖4 電纜線路故障狀態(tài)圖
由于兆歐表分辨率比較差,當(dāng)指示為零時,不能以為故障電阻就是零歐姆,要用萬用表測量故障電阻的精確值,以確定故障是否是屬于低阻的。可通過耐壓試驗確定高阻與閃絡(luò)性故障,弄清故障點的擊穿電壓。
六、不同的電纜故障探測方法的簡介
長期以來,涌現(xiàn)出了許多測量方法與儀器,這些方法與儀器適用于不同故障情況,各有優(yōu)缺點,這里就故障測距與定點儀器簡單地做一下評價和比較。
1.故障測距
(1)、電橋法
電橋法是一種zui為經(jīng)典測試電纜故障測距方法。如圖5所示:
圖5 電橋測距原理
電橋法測試線路的連接如圖所示,將被測電纜終端故障相與非故障相短接,電橋兩臂分別接故障相與非故障相,圖5b給出了等效電路圖。仔細調(diào)節(jié)R2數(shù)值,總可以使電橋平衡,即CD間的電位差為0,無電流流過檢流計,此時根據(jù)電橋平衡原理可得:
R3/R4=R1/R2 (1.1)
R1、R2為已知電阻,設(shè):R1/R2=K,則
R3/R4=K
由于電纜直流電阻與長度成正比,設(shè)電纜導(dǎo)體電阻率為R0,L全長代表電纜全長, LX 、、L0 分別為電纜故障點到測量端及末端的距離,則R2可用(L全長+L0)R0代替,根據(jù)式(1.1)可推出:
L全長+L0=KLX
而 L0=L全長-LX,所以
LX=2L全長/(K+1)
電纜斷路故障可用電容電橋測量,原理與上述電阻電橋類似。
電橋法優(yōu)點是簡單、方便、度高,但它的重要缺點是不適用于高阻與閃絡(luò)性故障,因為故障電阻很高的情況下,電橋里電流很小,一般靈敏度的儀表,很難探測,實際上電纜故障大部分屬于高阻與閃絡(luò)性故障。
在用電橋法測量故障距離之前,需用高壓設(shè)備將故障點燒穿,使其故障電阻值降到可以用電橋法進行測量的范圍,而故障點燒穿是件十分困難的工作,往往要花費數(shù)小時,甚至幾天的時間,十分不方便,有時會出現(xiàn)故障
點燒斷,故障電阻反而升高的現(xiàn)象,或是故障電阻燒得太低,呈*短路,以至不能用放電聲測法進行zui后定點。電橋法的另一缺點是需要知道電纜的準確長度等原始技術(shù)資料,當(dāng)一條電纜線路內(nèi)是由導(dǎo)體材料或截面不
同的電纜組成時,還要進行換算,電橋法還不能測量三相短路或斷路故障。
現(xiàn)在現(xiàn)場上電橋法用的越來越少了,不過一些測試人員,尤其是老的測試人員,仍然習(xí)慣于使用該方法。特別是對一些特殊的故障沒有明顯的低壓脈沖反射,但又不容易用高壓擊穿,如故障電阻不是太高的話,使用電橋法往往可以解決問題。
(2)、低壓脈沖反射法
低壓脈沖反射法,又叫雷達法,是受二次世界大戰(zhàn)雷達的啟發(fā)而發(fā)明的,它通過觀察故障點反射脈沖與發(fā)射脈沖的時間差測距。
低壓脈沖反射法的優(yōu)點是簡單、直觀、不需要知道電纜的準確長度等原始技術(shù)資料。根據(jù)脈沖反射波形還可以容易地識別電纜接頭與分支點的位置。
低壓脈沖反射法的缺點是仍不能適用于測量高阻與閃絡(luò)性故障。
(3) 高壓脈沖電壓法
高壓脈沖法,又稱閃測法,是六十年代發(fā)展起來的一種高阻與閃絡(luò)性故障測試方法?,F(xiàn)在國內(nèi)大多數(shù)企業(yè)生產(chǎn)、銷售該原理的電纜故障閃測儀。
首先使電纜故障閃測儀,在直流高壓或脈沖高壓信號的作用下?lián)舸┕收宵c,然后,通過觀察放電電壓脈沖在測試點與故障點之間往返一次的時間測距。脈沖高壓法的一個重要優(yōu)點是不必將高阻與閃絡(luò)性故障燒穿,直接利用故障擊穿產(chǎn)生的瞬間脈沖信號,測試速度快,測量過程也得到簡化,是電纜故障測試技術(shù)的重大進步。
高壓脈沖電壓法的缺點如下:
A.安全性差,儀器通過一電容電阻分壓器分壓測量電壓脈沖信號,儀器與高壓回路有電耦合,很容易發(fā)生高壓信號串入,造成儀器損壞。
B.在利用閃測法測距時,高壓電容對脈沖信號呈短路狀態(tài),需要串一電阻或電感以產(chǎn)生電壓信號,增加了接線的復(fù)雜性,且降低了電容放電時加在故障電纜上的電壓,使故障點不容易擊穿。
C.在故障放電時,特別是進行沖閃測試時,分壓器耦合的電壓波形變化不尖銳,難以分辨。
(4)、高壓脈沖電流法
高壓脈沖電流法是八十年代初發(fā)展起來的一種測試方法,以安全、可靠、接線簡單等優(yōu)點顯示了強大的生命力。
高壓脈沖電流法與高壓脈沖電壓法的區(qū)別在于:前者通過一線性電流耦合器測量電纜故障擊穿時產(chǎn)生的電流脈沖信號,成功地實現(xiàn)了儀器與高壓回路的電耦合,省去了電容與電纜之間的串聯(lián)電阻與電感,簡化了接線,傳感器耦合出的脈沖電流波形亦比較容易分辨。
(5)、對測距方法與儀器選擇的建議
目前,普遍采用脈沖測距法。低阻與斷路故障采用低壓脈沖反射法,它比電橋法簡單直接;測量高阻與閃絡(luò)性故障采用高壓脈沖電流法;兩者都是通過脈沖信號在故障點與測量點之間往返一次時間測距,但前者是主動向
電纜發(fā)射探測電壓脈沖,后者是被動記錄故障擊穿產(chǎn)生的瞬間脈沖電流信號;信號的記錄與處理顯示可由同一個電路完成,故可方便地使儀器同時實現(xiàn)兩個功能。
2. 故障定點
電纜故障的定點是故障探測的關(guān)鍵。目前,比較常用的方法是沖擊放電聲測法及主要用于低阻故障定點的音頻感應(yīng)法。實際應(yīng)用中,往往因電纜故障點環(huán)境困素復(fù)雜,如振動噪聲過大、電纜埋設(shè)深度過深等,造成定點困難,成為快速找到故障點的主要矛盾。
聲磁同步檢測法,提高了抗振動噪聲干擾的能力;通過檢測接收到的磁聲信號的時間差,可以估計故障點距離探頭的位置;比較在電纜兩側(cè)接收
到脈沖磁場的初始極性,亦可以在進行故障定點的同時尋找電纜路徑。
3. 新一代智能化電纜故障探測儀器
現(xiàn)代微電子技術(shù)的發(fā)展,促進了電纜故障探測儀器的進步。儀器正向智能化方向發(fā)展,能對采集的信號進行復(fù)雜的數(shù)學(xué)處理,自動計算故障點;記憶測量波形;打印輸出波形及測量結(jié)果;并具有體積小、攜帶方便、操作簡單等優(yōu)點。圖6是部分智能型電纜故障測試儀-粗測儀器閃測儀的圖片