產(chǎn)品簡(jiǎn)介
詳細(xì)介紹
電絮凝技術(shù)的歷史久遠(yuǎn),1889 年倫敦首先建成電絮凝法處理海水與電解廢液的車(chē)間〔2〕。1906 年,電絮凝技術(shù)首先被德國(guó)人A. E. Dietrich 在美國(guó)申請(qǐng),并用于船艙污水的處理〔2〕。由于早期電絮凝技術(shù)水平低、能耗高、處理廢水種類(lèi)少,因此在以后很長(zhǎng)的時(shí)間內(nèi)未得到廣泛應(yīng)用。近年來(lái),隨著工業(yè)廢水類(lèi)型的日益復(fù)雜和對(duì)小型高效廢水處理集成設(shè)備的需求增加,電絮凝技術(shù)逐漸成為研究熱點(diǎn),其中對(duì)電絮凝劑原位生成及其絮凝機(jī)理的深入解析,各種因素對(duì)絮凝效率及電極極化和鈍化的影響機(jī)制,電絮凝法對(duì)更多類(lèi)型廢水處理的嘗試,以及電絮凝技術(shù)耦合電氣浮等物化工藝提高整體處理效率等是該領(lǐng)域主要的研究方向。
1 電絮凝技術(shù)處理廢水的原理
電絮凝法是將絡(luò)合吸附與氧化還原、酸堿中和、氣浮分離結(jié)合起來(lái)的廢水處理工藝。M. Y. A. Mollah 等〔3〕研究電絮凝機(jī)理表明,帶正電的絮凝劑與污染物顆粒通過(guò)靜電引力和范德華力,絡(luò)合聚集成團(tuán),生成可沉降的絮凝體而去除。有機(jī)分子可通過(guò)陽(yáng)極氧化分解成小分子而易于被絮凝劑吸附,染料和溶解態(tài)的金屬離子則可通過(guò)陰極的電還原沉積作用與水體分離。廢水呈堿性時(shí),陽(yáng)極溶出產(chǎn)生的金屬離子經(jīng)水解和絡(luò)合作用消耗了廢水中過(guò)多的 OH-,使pH 下降;而對(duì)于酸性廢水,金屬氫氧化物和陰極電解水產(chǎn)生的 OH- 能消耗廢水中H+,使pH 上升,因而,電絮凝有中和酸堿的作用〔4〕。另外,當(dāng)處理含油廢水等形成的絮體微輕、難沉降時(shí),還可利用陰極析氫或耦合后續(xù)電氣浮工藝,由電解水產(chǎn)生的O2 和H2(直徑不超過(guò)60 μm,遠(yuǎn)小于加壓氣泡粒徑)在上浮過(guò)程中將微輕絮體帶至水面達(dá)到分離目的,而該過(guò)程無(wú)需外投PAM 等試劑和處理絮凝污泥。電氣浮還兼具一定電氧化去除COD 的功能。
電絮凝法是一個(gè)復(fù)雜的物化技術(shù),其核心內(nèi)容是絮凝劑的生成。對(duì)于Al 陽(yáng)極,電解產(chǎn)生的Al3+在水中迅速以水合離子Al(H2O)6 3+的形態(tài)存在,隨后很快水解失去H+ ,形成一系列單核絡(luò)合物,如 Al(H2O)5OH2+、Al(H2O)4(OH)2+、Al(H2O)3(OH)3 等。由于羥基鋁離子增多,剩余孤對(duì)電子,羥基配位能力未飽和,可與另一個(gè)鋁離子逐漸聚合為羥基橋聯(lián)結(jié)構(gòu),形成兩個(gè)羥基鍵橋,從而由單核鋁的絡(luò)合物緩慢聚合成表面富含羥基的多核高分子網(wǎng)狀聚合物 Alm(H2O )x(OH )n (3m-n),如Al2(H2O )8(OH)2 4+、 Al16(H2O)24(OH)36 12+ 等,并終轉(zhuǎn)化成無(wú)定形的〔Al(OH)3〕n 絮凝劑。A. Sarpola 等〔5〕通過(guò)質(zhì)譜分析證實(shí)了有超過(guò)80種單價(jià)鋁核陽(yáng)離子(Al2~13)和19 種多價(jià)鋁核陽(yáng)離子(Al10~27)存在,另外,還發(fā)現(xiàn)超過(guò)45 種單價(jià)鋁核陰離子(Al1~12) 和9 種多價(jià)鋁核陰離子(Al10~32),而鋁絮凝劑的聚合度多可達(dá)32 個(gè)鋁。另外,除上述高分子網(wǎng)狀聚合物Alm(H2O)x(OH) n (3m-n) 外,還會(huì)生成一些氧化鋁合氫氧根的大分子聚合物,如Al13O4(OH)24 7+等,或當(dāng)水體中含有NaCl 電解質(zhì)時(shí),還會(huì)生成一些被NaCl 分子包覆的絮凝劑如〔Al2 (OH)3 (H2O)3·2.05NaCl〕3 + 、〔Al3 (OH)6 (H2O)8· 2.00NaCl〕3+等。一般地,聚合度與絮凝效率呈正相關(guān),吳珍等〔6〕研究表明30 個(gè)鋁的聚合比13 個(gè)鋁的聚合的吸附和架橋作用強(qiáng),而且有更寬的有效投量范圍。通常,低聚合度絮凝劑是通過(guò)吸附作用去除污染物粒子;而高聚合度絮凝劑則因表面積大、表面基團(tuán)多,對(duì)污染物粒子通過(guò)網(wǎng)捕包覆去除,但高聚合度的絮凝劑,產(chǎn)生的后續(xù)污泥量較大,增加了處置成本。
對(duì)于Al 陽(yáng)極,電絮凝劑的生成過(guò)程還受pH、 Al3+濃度、水體成分、停留時(shí)間、水流方式和氣泡生成速率等因素的影響。
一般情況下,鋁絮凝劑在弱堿性條件下能快速聚合,但由于氫氧化鋁的兩性特征,pH 過(guò)高時(shí)聚鋁又易解離成Al(OH)4-。Jinming Duan 等〔7〕的研究表明,鋁絮凝劑在除污過(guò)程中根據(jù)pH 與絮凝劑量的不同存在兩種機(jī)理:pH 低于6.5 時(shí),溶解的Al3+濃度小于60 μmol,Al3+在水中以水合態(tài)Al(H2O)6 3+和帶正電的單核Al(H2O)5(OH)2+、Al(H2O)4(OH)2+絮凝劑的形式存在,其主要通過(guò)電荷中和作用對(duì)帶負(fù)電污染物進(jìn)行去除;pH 超過(guò)6.5 時(shí),溶解的Al3+濃度大于60 μmol,Al3+在水中以無(wú)定形的〔Al(OH)3〕n 絮凝劑的形式存在,其通過(guò)直接吸附去除污染物。當(dāng)水體有硫酸鹽時(shí),吸附在Alm(H2O)x(OH) n (3m-n)上的SO4 2- 由于氫鍵和電荷的吸引作用〔8〕可促進(jìn)更多的高分子網(wǎng)狀聚合物連接起來(lái)終形成無(wú)定形的〔Al(OH)3〕n 絮凝劑。
Al3+在水體中的停留時(shí)間越長(zhǎng),與 OH- 水化越充分,聚鋁的聚合度和產(chǎn)量就越大,越有利于后續(xù)除污,但停留時(shí)間過(guò)長(zhǎng)會(huì)降低電絮凝的時(shí)空效率。電絮凝法通常采用序批間歇式或循環(huán)流動(dòng)式的水流設(shè)置來(lái)保證金屬離子的水化聚合及絮凝過(guò)程的*和高效。
陰極析氫反應(yīng)會(huì)產(chǎn)生微氣泡,當(dāng)其生成速率很高時(shí),會(huì)擾亂金屬離子的聚合,絮凝劑生成慢且聚合度和致密度小。
對(duì)于鐵陽(yáng)極,隨pH 變化溶出的鐵離子會(huì)發(fā)生氧化還原反應(yīng)和水解、聚合等復(fù)雜過(guò)程。D. Lakshmanan 等〔1〕研究了鐵陽(yáng)極的氧化情況,發(fā)現(xiàn)鐵陽(yáng)極溶出的 Fe2+在pH 為6.5~7.5 時(shí)較少發(fā)生氧化,并且在低DO 濃度下保持可溶性Fe2+狀態(tài),而隨著DO 濃度的增加,則以Fe2+和難溶的Fe(OH)3/FeOOH 狀態(tài)共存; pH=8.5 時(shí),F(xiàn)e2+會(huì)迅速氧化成Fe3+并水解為Fe(OH)3/ FeOOH,其間Fe3+在水中主要以水合態(tài)Fe(H2O)6 3+的形式存在,當(dāng)遇到水中的—OH 時(shí)會(huì)水解成一系列單核水解產(chǎn)物Fe(H2O)5(OH)2+、Fe(H2O)4(OH)2+等。同樣這些單核水解產(chǎn)物由于羥基的配位數(shù)未達(dá)飽和,在相鄰羥基的鍵橋作用下可聚合成大分子聚合物并終形成γ-FeOOH 沉淀。鐵絮凝劑生長(zhǎng)的快慢主要由鐵溶出速率和pH 決定,在鐵溶出速率一定時(shí),pH 在6~10 有利于γ-FeOOH 的生成。如D. Lakshmanan 等〔9〕在電絮凝除砷的研究中發(fā)現(xiàn),電解 2 min 后,在pH=8.5 的水體中,F(xiàn)e3+已全部聚合成 γ-FeOOH。
2 電絮凝法處理廢水的影響因素
應(yīng)用電絮凝法有效處理廢水,還要解決電極鈍化和電解極化等問(wèn)題,保證電流效率和絮凝效果,控制槽壓和能耗。電極鈍化主要由陽(yáng)極溶出產(chǎn)生的金屬離子氧化成膜并附著于陽(yáng)極引起〔10〕;電解極化則包括濃差極化、電化學(xué)極化和金屬陽(yáng)極表面極化。
2.1 極板的影響
通常鐵電極產(chǎn)生的絮體粒徑小、沉淀密實(shí)、沉降快,但出水因含F(xiàn)e3+而顯黃色,斷電時(shí)電極易繼續(xù)銹蝕。而鋁電極產(chǎn)生絮體速度快、無(wú)色度生成、絮體顆粒大且吸附能力強(qiáng),但沉淀松散、沉降緩慢不利于后續(xù)處理,另外對(duì)于含油廢水,鋁電極去除COD 的效率略低于鐵電極〔11〕,這可能與溶解態(tài)的Fe3+具有一定氧化性有關(guān)。鋁、鐵極板聯(lián)用還可提高絮凝效果, I. Heidmann 等〔12〕研究了鋁-鐵組合電極對(duì)廢水中 Ni2+、Cu2+、Cr6+的電絮凝效果(三者初始質(zhì)量濃度分別為2.0、2.5、0.7 g/L),電解3 h,組合電極去除上述離子的效率明顯高于單獨(dú)使用鋁或鐵電極,其中鋁-鐵組合、鋁、鐵電極對(duì)Cr6+的去除率分別為99%、 85%、47%。
板間距從時(shí)空關(guān)系上影響著電絮凝劑生長(zhǎng)和后續(xù)絮凝效果。通常適宜的極板間距為0.5~2.5 cm,極板厚度是1~2 mm,板間距過(guò)大或過(guò)小均不利于提高電絮凝效率和降低能耗。I. Zongo 等〔13〕在研究電絮凝技術(shù)去除工業(yè)廢水中鉻(Ⅵ)的實(shí)驗(yàn)時(shí)發(fā)現(xiàn),電極間距以2.0 cm 為宜,間距過(guò)大則導(dǎo)致電解效率低和電解時(shí)間長(zhǎng),濃差極化增加;而板間距過(guò)小,易發(fā)生短路和絮團(tuán)在極板間的堵塞。