產(chǎn)地類別 | 國(guó)產(chǎn) | 應(yīng)用領(lǐng)域 | 化工,生物產(chǎn)業(yè),石油,地礦,電子 |
---|
產(chǎn)品分類品牌分類
-
變壓器消磁分析儀 變壓器油色譜分析儀 手持式選頻電平表 變壓器油帶電度測(cè)量裝置 油色譜分析儀 絕緣油介質(zhì)損耗及體積電阻率測(cè)試儀 變壓器有載開(kāi)關(guān)測(cè)試儀 變壓器鐵芯接地電流測(cè)試儀 變壓器油微水測(cè)試儀 變壓器綜合測(cè)試臺(tái) 絕緣油介電強(qiáng)度自動(dòng)測(cè)試儀 變壓器容量及空負(fù)載測(cè)試儀 變壓器短路阻抗測(cè)試儀 變壓器繞組變形測(cè)試儀 變壓器變比組別測(cè)試儀 手持式三通道直流電阻測(cè)試儀 高壓異頻介質(zhì)損耗測(cè)試儀 變壓器有載分接開(kāi)關(guān)測(cè)試儀 直流電阻測(cè)試儀
-
發(fā)電機(jī)錄波儀 錄波儀 便攜式電量記錄分析儀 電流電壓互感器誤差測(cè)試儀 CT參數(shù)分析儀 電子式互感器校驗(yàn)儀 發(fā)電機(jī)轉(zhuǎn)子交流阻抗測(cè)試儀 極速多臺(tái)位互感器檢定裝置 測(cè)量用電流互感器 全自動(dòng)電容電橋測(cè)試儀 水內(nèi)冷發(fā)電機(jī)專用泄漏電流測(cè)試儀 互感器勵(lì)磁特性綜合測(cè)試儀 大電流發(fā)生器/升流器 電容電流測(cè)試儀 互感器二次回路負(fù)荷測(cè)試儀 三相異頻電容電感測(cè)試儀 變頻式互感器綜合測(cè)試儀 三相電容電感測(cè)試儀 互感器伏安特性綜合測(cè)試儀 無(wú)線高壓互感器變比測(cè)試儀 微機(jī)互感器綜合特性測(cè)試儀
-
全自動(dòng)運(yùn)動(dòng)粘度測(cè)定儀 全自動(dòng)張力測(cè)定儀 高壓鉗型電流表 數(shù)字衛(wèi)星無(wú)線核相器 精密油介損體積電阻率測(cè)試儀 絕緣油體積電阻率測(cè)試儀 智能型短路接地線成組電阻測(cè)試儀 石油破/抗乳化測(cè)定儀 全自動(dòng)凝點(diǎn)傾點(diǎn)測(cè)試儀 開(kāi)口閃點(diǎn)測(cè)試儀 智能閉口閃點(diǎn)測(cè)試儀(工控機(jī)型) 全自動(dòng)液體張力測(cè)試儀 全自動(dòng)水溶性酸值測(cè)試儀 絕緣油含氣量測(cè)定儀 變壓器油酸值測(cè)定儀
產(chǎn)品簡(jiǎn)介
詳細(xì)介紹
HDCR500三相數(shù)字相位伏安表除了能夠直接測(cè)量交流電壓值、交流電流值,電壓之間、電流之間及電壓與電流之間的相位和工頻頻率外,還具備其它測(cè)量判斷功能,對(duì)感性電流、容性電路的判斷,檢查變壓器接線組別,檢查電能表是否接線正確,是把握電力使用情況,進(jìn)行二次回路檢查的理想儀表。
HDCR500三相數(shù)字相位伏安表
功 能 | 測(cè)量三相交流電壓、電流、電壓間相位、電流間相位、電壓電流間相位、頻率、相序、有功功率、無(wú)功功率、視在功率、功率因數(shù)、電流矢量和,判別變壓器接線組別、感性、容性電路,測(cè)試二次回路和母差保護(hù)系統(tǒng),讀出差動(dòng)保護(hù)各組CT之間的相位關(guān)系,檢查電度表的接線正確與否,檢修線路設(shè)備等 | ||
電 源 | 3.7V鋰充電電池 | ||
功 耗 | 大250mA | ||
顯示模式 | LCD彩屏顯示,72×55mm | ||
儀表尺寸 | 長(zhǎng)寬厚:187*119*48mm | ||
電壓量程 | AC 0.00V~600V | 分辨率:0.01V | 精度:±0.5%FS |
電流量程 | AC 0.0mA~20.0A | 分辨率:0.1mA | 精度:±0.5%FS |
相位量程 | 0.0°~360.0° | 分辨率:0.1° | 精度:±1° |
頻率量程 | 45.00Hz~65.00Hz | 分辨率:0.01Hz | 精度:±0.5Hz |
有功功率量程 | 0.0W~12kW | 分辨率:0.1W | 精度:±(3%rdg+3dgt) |
無(wú)功功率量程 | 0.0W~12kVAR | 分辨率:0.1VAR | 精度:±(3%rdg+3dgt) |
視在功率量程 | 0.0W~12kVA | 分辨率:0.1VA | 精度:±(3%rdg+3dgt) |
功率因數(shù)量程 | -1~+1 | 分辨率:0.001 | 精度:±0.03 |
電流矢量和 | 0mA~60.0A | ||
相 序 | 正相:U1、U2、U3或I1、I2、I3光標(biāo)從左往右順次閃爍 反相:U1、U2、U3或I1、I2、I3光標(biāo)從右往左順次閃爍 | ||
檢測(cè)速率 | 約2秒/次 | ||
數(shù)據(jù)保持 | 測(cè)試中按HOLD鍵保持?jǐn)?shù)據(jù),“HOLD”符號(hào)顯示 | ||
數(shù)據(jù)存儲(chǔ) | 500組 | ||
硅膠防護(hù)套 | 有 | ||
USB接口 | USB接口,所存數(shù)據(jù)上傳電腦,便于分析管理數(shù)據(jù) | ||
自動(dòng)關(guān)機(jī) | 開(kāi)機(jī)約15分鐘后,儀表自動(dòng)關(guān)機(jī),以降低電池消耗 | ||
背光功能 | 有,適合昏暗場(chǎng)所及夜間使用 | ||
電壓檢測(cè) | 當(dāng)電池電壓低于3.2V時(shí),電池電壓低符號(hào)顯示,提醒及時(shí)充電 | ||
儀表質(zhì)量 | 主機(jī):380g(帶電池) | ||
尖嘴形電流鉗:180g×3 | |||
測(cè)試線:190g | |||
電壓測(cè)試線長(zhǎng)度 | 1.5m | ||
電流鉗線長(zhǎng) | 2m | ||
工作溫濕度 | -10℃~40℃;80%Rh以下 | ||
存放溫濕度 | -10℃~60℃;70%Rh以下 | ||
輸入阻抗 | 測(cè)試電壓輸入阻抗為:1MΩ | ||
耐 壓 | 儀表線路與外殼間耐受1000V/50Hz的正弦波交流電壓歷時(shí)1分鐘 | ||
絕 緣 | 儀表線路與外殼之間≥100MΩ | ||
結(jié) 構(gòu) | 外殼絕緣 | ||
適合安規(guī) | IEC61010-1 CAT Ⅲ 600V,IEC61010-031,IEC61326,污染等級(jí)2 |
號(hào)的模式識(shí)別。模式識(shí)別的主要步驟包括放電信號(hào)的測(cè)量、放電信號(hào)特征提取與分類和特征指紋庫(kù)比對(duì)三個(gè)步驟,從而判斷所測(cè)信號(hào)是否為真實(shí)的放電信號(hào)以及是何種放電。一種模式識(shí)別方法是利用相位統(tǒng)計(jì)譜圖的形狀特點(diǎn),通過(guò)計(jì)算統(tǒng)計(jì)譜圖的偏斜度、陡峭度以及相互關(guān)聯(lián)因素等特征參數(shù),從而對(duì)缺陷類型進(jìn)行確認(rèn)和識(shí)別。另外一種是聚類分析法,該方法主要將放電信號(hào)按其各自的等效頻率、等效時(shí)長(zhǎng)或其它與波形相關(guān)的特征參量進(jìn)行分類,形成時(shí)頻域映射譜圖。時(shí)頻譜圖的特點(diǎn)是多個(gè)放電源、不同放電類型的局部放電脈沖會(huì)被映射到不同聚點(diǎn),這樣便于在局部放電相位譜圖上將真實(shí)放電和噪聲干擾區(qū)分開(kāi)來(lái)如圖5-8所示。還有一種聚類原理是利用三相同步局部放電檢測(cè)技術(shù),對(duì)耦合到的信號(hào)進(jìn)行幅度、相位或頻率的計(jì)算,從而進(jìn)行分類,如圖5-9所示。
圖5-8 局部放電時(shí)頻映射譜圖[16] 圖5-9 三相局部放電同步檢測(cè)聚類譜圖[28]
(二)放電源的定位
對(duì)于電力電纜運(yùn)行情況下局部放電源的定位,較為簡(jiǎn)單的方法是利用高頻局部放電檢測(cè)傳感器在電纜終端、各個(gè)接頭處分別進(jìn)行局部放電信號(hào)的檢測(cè),通過(guò)對(duì)比分析不同傳感器位置放電信號(hào)的時(shí)域和頻域特征,來(lái)進(jìn)行放電源的大致定位。該方法主要利用的是放電脈沖信號(hào)在電纜中傳輸衰減原理,隨著放電信號(hào)的傳播,放電信號(hào)幅值減小,上升時(shí)間下降、脈沖寬度變寬,信號(hào)高頻分量嚴(yán)重衰減等,因而可利用這些特點(diǎn)大致判斷出放電源的位置。但值得注意的是該方法較為粗略,精度較低,僅能大致判斷出在哪個(gè)接頭附近或哪兩接頭間存在缺陷。
另一種方法是利用分布式局部放電同步檢測(cè)技術(shù)。該方法與上述方法類似,但不同的是在連續(xù)幾個(gè)接頭處進(jìn)行同步測(cè)量,根據(jù)不同測(cè)量處耦合到同一脈沖信號(hào)的幅值大小、極性以及到達(dá)時(shí)間的不同而準(zhǔn)確定位放電源的位置。該方法已在電纜在線局部放電監(jiān)測(cè)中逐漸展開(kāi)應(yīng)用,如圖5-10所示。圖5-10 分布式同步局部放電檢測(cè)技術(shù)
還有一種方法是進(jìn)行雙端局部放電定位。該方法采用的仍為脈沖反射(TDR)原理。對(duì)于較長(zhǎng)電纜,放電信號(hào)的嚴(yán)重衰減會(huì)導(dǎo)致反射脈沖不可分辨,因此有必要進(jìn)行雙端局部放電定位:在電纜兩端分別安裝高頻檢測(cè)傳感器,在電纜遠(yuǎn)端同時(shí)安裝便攜式應(yīng)答裝置和大幅值脈沖發(fā)生器。當(dāng)在遠(yuǎn)端檢測(cè)到放電脈沖信號(hào)時(shí)(高于設(shè)定閾值),便攜式應(yīng)答裝置被啟動(dòng),觸發(fā)大幅值脈沖發(fā)生器發(fā)出一個(gè)幅值較大的脈沖,從而可根據(jù)原脈沖與大脈沖信號(hào)之間的時(shí)間差對(duì)電纜缺陷進(jìn)行準(zhǔn)確定位。
對(duì)于其他電力設(shè)備,如變壓器、互感器等,利用高頻局部放電檢測(cè)傳感器定位的應(yīng)用較少,對(duì)應(yīng)的局部放電源定位可采用超聲波、特高頻等方法實(shí)現(xiàn)