紅外光譜:利用紅外光與物質(zhì)相互作用實(shí)現(xiàn)物質(zhì)光譜特征的測(cè)量
概述
紅外光譜技術(shù)利用紅外光與物質(zhì)相互作用實(shí)現(xiàn)物質(zhì)光譜特征的測(cè)量。紅外光通常所指的是波長(zhǎng)在780nm~1mm之間光譜范圍很寬的電磁波。1800年左右,英國(guó)天文學(xué)家威廉-赫歇爾因紅外光的熱效應(yīng)發(fā)現(xiàn)了紅外光, 從此開啟了紅外光譜的征程。日常的紅外熱成像儀就是利用紅外相機(jī)對(duì)人體發(fā)出的紅外光進(jìn)行成像,只是沒有光譜分辨。根據(jù)紅外光與化學(xué)物相互作用的特點(diǎn),進(jìn)一步分為近紅外光(NIR,12500~4000cm-1)、中紅外(MIR,4000~400cm-1)以及遠(yuǎn)紅外波段(FIR,400~10cm-1)光譜測(cè)量。
1、紅外光譜原理
要了解紅外光與物質(zhì)相互作用的機(jī)制,首先從分子的結(jié)構(gòu)和性質(zhì)開始?;衔镏械脑右圆煌姆绞讲粩嗟剡\(yùn)動(dòng)和振動(dòng),即使像水這樣簡(jiǎn)單的分子也有六種不同的振動(dòng)方式:對(duì)稱拉伸、反對(duì)稱拉伸、變形或彎曲振動(dòng)、搖擺和扭曲振動(dòng)等。每一種振動(dòng)都以不同的頻率發(fā)生,這是化學(xué)鍵和化合物所特*的。這些振動(dòng)頻率恰好與電磁波譜中紅外光的頻率相匹配,當(dāng)滿足一定的條件,分子就會(huì)與紅外光作用,引起光子數(shù)量的變化。由于每種化學(xué)物質(zhì)都有不同頻率的振動(dòng),因此每種化合物的頻譜都是獨(dú)*無二的, 這意味著紅外光譜創(chuàng)造了一種“化學(xué)指紋”,可以用來識(shí)別和量化幾乎任何化學(xué)物種。
圖 1 分子振動(dòng)模式
圖2極性分子與非極性分子
物質(zhì)紅外光譜的產(chǎn)生是由于化學(xué)鍵的振動(dòng)能級(jí)和外紅光的能量相同,發(fā)生了共振吸收,從而發(fā)生能級(jí)躍遷。那么只要振動(dòng)能級(jí)與紅外光子的能量相同就可以發(fā)生共振吸收么?事實(shí)上,還需要滿足電偶極矩的變化。例如,考慮一對(duì)稱的非極性分子的對(duì)稱振動(dòng)模式,總電偶極距在發(fā)生振動(dòng)前后都為零,因此不會(huì)對(duì)紅外有吸收。與之差別的是拉曼光譜,對(duì)于非極性分子的對(duì)稱振動(dòng),由于外電磁場(chǎng)下分子集體產(chǎn)生宏觀極化率,雖然沒有紅外吸收信號(hào),但是存在拉曼散射信號(hào)。而對(duì)于極性分子,可能在振動(dòng)前后同時(shí)存在瞬間偶極矩和極化率的變化,因此可能同時(shí)存在紅外吸收信號(hào)和拉曼散射信號(hào)。
圖3 水分子的振動(dòng)光譜
絕大多數(shù)有機(jī)化合物的基頻振動(dòng)出現(xiàn)在中紅外光譜(4000~400cm-1)區(qū)域。按照光譜特征與分子結(jié)構(gòu)的關(guān)系,紅外光譜可分為特征區(qū)(官能團(tuán)區(qū),4000~1300cm-1)和指紋區(qū)(1300~400cm-1)。特征區(qū)光譜表現(xiàn)為吸收峰數(shù)目少,同時(shí)易鑒別,可用于鑒別官能團(tuán),包括各種雙鍵、三鍵伸縮基頻峰(包含H原子的單鍵等),因此它是鑒別官能團(tuán)有價(jià)值的區(qū)間,又稱為官能團(tuán)區(qū)。指紋區(qū)包括各種單鍵(C-C,C-O)的伸縮振動(dòng)以及多數(shù)基團(tuán)的彎曲振動(dòng),表現(xiàn)為吸收峰多、峰強(qiáng),峰的強(qiáng)度、峰型受分子結(jié)構(gòu)的變化影響敏感,結(jié)構(gòu)上的微小變化(如同系物,同分異構(gòu)體和空間異構(gòu)等)都會(huì)引起指紋區(qū)的變化,因此稱為指紋區(qū)。指紋區(qū)對(duì)于區(qū)別結(jié)構(gòu)類似的化合物至關(guān)重要。
2、紅外光譜的測(cè)量
雖然紅外光譜已經(jīng)成為化學(xué)分析技術(shù)的一個(gè)通用術(shù)語,其中*常用的技術(shù)是傅里葉變換紅外光譜技術(shù)(Fourier transform infrared spectrum, FT-IR)。通常所指的傅里葉變換紅外光譜儀測(cè)量范圍主要在中紅外波段(400~4000cm-1),是光譜檢測(cè)中應(yīng)用十分廣泛的技術(shù)。1970年左右研制成功的傅里葉變換紅外*底改變了紅外檢測(cè)技術(shù)。同時(shí),20世紀(jì)80年代后期,新的測(cè)量方式(如衰減全反射測(cè)量,Attenuated Total Reflection)經(jīng)過改進(jìn)不斷成熟,大大提高了紅外光譜測(cè)量的效率和適用范圍。目前,大量化學(xué)物種的紅外光譜信息已被匯編成光譜庫,即使對(duì)那些不了解其背后理論的人來說,紅外光譜學(xué)也非常簡(jiǎn)單。傅里葉紅外光譜技術(shù)具有光譜采集效率高、通光量大、光譜分辨率高、信噪比好的優(yōu)點(diǎn)。該技術(shù)的數(shù)據(jù)采集與傳統(tǒng)的紅外光譜儀器不同,是通過傅里葉變換的數(shù)學(xué)運(yùn)算將數(shù)據(jù)轉(zhuǎn)換光譜信息。
圖4 FT-IR技術(shù)的原理示意圖
如圖4是傅里葉變換紅外光譜儀的原理示意圖,光譜儀主要由邁克爾遜干涉儀構(gòu)成,其中包括寬帶分束片,紅外寬帶光源以及寬帶紅外探測(cè)器。紅外光源產(chǎn)生的寬帶紅外光源經(jīng)過紅外分束鏡,一部分透射到動(dòng)鏡,另一方部分經(jīng)過反射到固定鏡。分別來自動(dòng)鏡和定鏡的光束由于光程差發(fā)生干涉,信號(hào)強(qiáng)度被單點(diǎn)探測(cè)器測(cè)量。通過來回移動(dòng)動(dòng)鏡, 獲得寬帶光源的干涉圖,再經(jīng)過傅里葉變換,得到隨波長(zhǎng)(波數(shù))變化的光譜圖。傅里葉變換的分光原理是基于光的干涉,光譜儀采集到的是干涉圖,經(jīng)過快速傅里葉變換算法得到能量圖或光譜圖。再通過樣品的透過率或反射率測(cè)量得到樣品在不同波長(zhǎng)(波數(shù))的紅外吸收光譜。
圖5 FT-IR 紅外吸收光譜的測(cè)量原理
傅里葉變換光譜儀的光譜范圍受光學(xué)元件的限制,包括光源、分束片、檢測(cè)器。根據(jù)光學(xué)系統(tǒng)的光譜范圍的要求,選擇合適的光源、分束片、探測(cè)器可以實(shí)現(xiàn)從近紅外、中紅外到遠(yuǎn)紅外的測(cè)量。當(dāng)確定了光源、光路以及檢測(cè)器,那么怎么實(shí)現(xiàn)樣品的光譜測(cè)量呢?這需要從物質(zhì)的性質(zhì)和形態(tài)出發(fā)選擇不同的光譜測(cè)量方式。常見的紅外光譜的測(cè)量方式主要有四種模式,包括透射模式、衰減全反射模式、漫反射模式以及鏡面反射模式。
(1)紅外透射
根據(jù)比爾-朗伯定律A=lg(1/T)=aLc(A為吸光度, T為透光度, a為吸光系數(shù), L為吸收層厚度, c為吸光物質(zhì)的濃度),透射模式的吸光強(qiáng)度和樣品的吸收系數(shù)、厚度以及濃度成正比。紅外透射是紅外光譜測(cè)量的標(biāo)準(zhǔn)方法,經(jīng)常用于固體、液體、氣體的定性和定量分析,具有高靈敏度和低成本的優(yōu)勢(shì)。固體常用壓片法利用稀釋劑進(jìn)行中紅外透射率測(cè)試。具體操作是將樣品和溴化鉀一起研磨成微米顆粒后,壓片成直徑13mm、厚度0.5mm的薄片,溴化鉀和樣品的比例約為100:1(樣品1~2mg)。由于溴化鉀易于吸水潮解,為了避免水分吸收對(duì)紅外光譜測(cè)量的干擾,壓片之前需要對(duì)KBr粉末進(jìn)行干燥處理。對(duì)于液體和氣體,可以根據(jù)吸光系數(shù),選擇不同光程的透射樣品池,根據(jù)揮發(fā)性和腐蝕性選擇可拆卸或密封式樣品池。總之,選擇合適的樣品池后,透射模式基本可以實(shí)現(xiàn)ppm和ppb靈敏度量級(jí)的樣品檢測(cè)。
(2)衰減全反射測(cè)量模式(Attenuated Total Reflection, ATR)
由于紅外透射測(cè)量需要對(duì)樣品進(jìn)行研磨和壓片等繁瑣的前處理,而利用紅外ATR測(cè)量可以直接進(jìn)行測(cè)量,這大大提高了紅外光譜的測(cè)量效率。ATR模式是基于全內(nèi)反射原理,當(dāng)一束紅外光從光密介質(zhì)到光疏介質(zhì),會(huì)產(chǎn)生一束反射光和折射光,當(dāng)入射角大于全反射角時(shí),折射光線將沿晶體界面?zhèn)鞑?,引起隱逝波。隱逝波傳播方面沿界面進(jìn)行,等相位面垂直于界面,隨著遠(yuǎn)離界面距離增加,光強(qiáng)逐漸衰減為零,衰減深度為:
圖6 FT-IR ATR測(cè)量的示意圖
衰減全反射時(shí),光經(jīng)過全反射晶體(光密介質(zhì),如金剛石)反射,隱逝波在樣品(光疏介質(zhì))內(nèi)部傳播和衰減。消逝波與光疏介質(zhì)(樣品)的相互作用越強(qiáng),全反射的信號(hào)相對(duì)越小,如果樣品在入射光的頻率區(qū)域有吸收,反射光強(qiáng)度在樣品有吸收的頻率位置發(fā)生減弱,可產(chǎn)生和普通透射吸收相類似的譜圖,因此可用于化學(xué)組成的定性和定量分析。采用ATR 附件測(cè)量,因?yàn)椴煌〝?shù)隱逝波的穿透深度不同,測(cè)得的紅外光譜在高波數(shù)和低波數(shù)的穿透深度不同,意味著不同波長(zhǎng)的光程不同,為了與普通透射紅外光譜進(jìn)行比較,需要對(duì) ATR附件測(cè)得的光譜進(jìn)行校正,以1000 cm-1為基準(zhǔn)(1000cm-1處AB=AB(ATR)校正公式:
AB(ATR)= AB* ν[cm-1] / 1000 [cm-1]
全反射晶體的選擇主要考慮因素有折射率、臨界角、入射角、穿透深度、適用光譜范圍、反射次數(shù)、有效光程、晶體耐酸堿度、晶體硬度等。金剛石的硬度最大,且耐酸耐堿耐化學(xué)腐蝕,應(yīng)用廣泛,但其在1800~2300 cm-1(4.3~5.5um)波段有強(qiáng)吸收,在此區(qū)域有吸收的樣品需要避免使用。ZnSe晶體可適用的光譜范圍在20000~650 cm-1,符合絕大數(shù)樣品的測(cè)試,但其不耐酸堿,硬度不高,容易產(chǎn)生劃痕。實(shí)驗(yàn)中需要根據(jù)實(shí)際需求對(duì)ATR晶體進(jìn)行選擇。
(3)漫反射光譜測(cè)量
圖7 鏡面反射和漫反射
紅外固體透射測(cè)量模式需要研磨、粉末干燥以及壓片等前樣品處理過程。ATR測(cè)量模式雖然適合絕大多數(shù)樣品,但是如果樣品很硬,很容易把全反射晶體壓壞,或者樣品不適合壓頭擠壓,就不再能夠利用ATR模式進(jìn)行測(cè)量,這時(shí)候可以考慮漫反射光譜測(cè)量模式進(jìn)行紅外光譜測(cè)量。漫反射測(cè)量模式非常適用于很硬的固體顆?;蚬腆w粉末,或者負(fù)載在載體上微量樣品,是紅外原位測(cè)試的很重要的附件,比如對(duì)環(huán)境催化劑相關(guān)的原位研究,研究催化劑表面改性、催化劑在反應(yīng)過程中的吸附、反應(yīng)動(dòng)力學(xué)等。漫反射法不需要對(duì)固體粉末進(jìn)行處理,可以直接測(cè)試顆粒、塊體、片狀等樣品。利用積分球漫反射光譜測(cè)量可以對(duì)樣品進(jìn)行定性、定量分析。
(4)鏡面反射光譜測(cè)量
根據(jù)菲涅爾定律,反射率和偏振相關(guān),平行光和垂直光的反射率表示如下:
當(dāng)光入射角為布魯斯特角(Brewster angle)時(shí),反射光與折射光相互垂直,同時(shí)水平偏振光的反射率為零,=0,反射光部分只有垂直偏振光,根據(jù)菲涅爾定律有:
可以通過選擇合適的偏振進(jìn)行測(cè)量,得到樣品表面的光譜反射率曲線,再通過K-K關(guān)系得到樣品的光學(xué)常數(shù)(折射率n和消光系數(shù)k)以及色散關(guān)系(與波長(zhǎng)的依賴關(guān)系),再間接得到樣品在不同波長(zhǎng)下的吸收系數(shù)。鏡面反射紅外測(cè)量模式主要針對(duì)薄膜樣品的測(cè)量,對(duì)于薄膜樣品紅外光通過的光程不夠信號(hào)微弱的問題,可以通過與高反射襯底一起構(gòu)建更大通光程的樣品,或掠入射等方式實(shí)現(xiàn)更加靈敏的測(cè)試。
3、紅外光譜分析
采集到一幅紅外光譜圖,首先可以判斷采集譜圖的質(zhì)量,保證紅外吸收強(qiáng)度大且無飽和、圖譜噪聲較小、基線平整,水和CO2峰等干擾不明顯等。樣品的紅外光譜由一系列紅外吸收峰構(gòu)成,不同的吸收峰具有不同的峰位、峰強(qiáng)以及峰型。分子內(nèi)各種官能團(tuán)的特征吸收峰主要出現(xiàn)在紅外光波段的官能團(tuán)區(qū)(4000~1300cm-1),而基頻峰主要出現(xiàn)在指紋區(qū)(1300~400cm-1)。紅外吸收峰的強(qiáng)度取決于分子振動(dòng)前后偶極矩的變化大小,偶極矩變化越大吸收越強(qiáng)。一般來說極性較強(qiáng)的基團(tuán)振動(dòng)(如C=O,C-H),吸收強(qiáng)度越大。而極性越弱的基團(tuán)(如C=C)振動(dòng)吸收強(qiáng)度越弱。不同基團(tuán)的振動(dòng)可能振動(dòng)頻率相近,可能一段頻率有多個(gè)振動(dòng)的強(qiáng)吸收,但是由于基團(tuán)內(nèi)多個(gè)振動(dòng)峰位和強(qiáng)度不太可能都相同,出現(xiàn)雖然峰位相同但峰型不相同的情況,如-OH、-NH伸縮振動(dòng)峰在3400~3200cm-1, 但是兩者的峰型很不同,從而區(qū)分出不同的官能團(tuán)。官能團(tuán)區(qū)主要是確定哪一類物質(zhì),確認(rèn)完官能團(tuán)后,再通過指紋區(qū)鑒別物質(zhì)的精細(xì)結(jié)構(gòu),通官能團(tuán)區(qū)和值指紋區(qū)可以對(duì)樣品的結(jié)構(gòu)進(jìn)行定性的判斷。另外針對(duì)定性判斷,也可以利用眾多光譜解析工具解析光譜,以及利用譜庫檢索幫助鑒別樣品光譜。通過透射等測(cè)量模式得到吸光度或透過率的紅外光譜圖,根據(jù)Beer-Lambert定律進(jìn)行定量分析。
圖8 Zolix FI-RXF100傅里葉變換光譜儀測(cè)量對(duì)乙酰氨基苯酚(P-acetamidophenol)紅外光譜圖(包括官能團(tuán)區(qū)和指紋區(qū))
總結(jié)
卓立漢光儀器有限公司長(zhǎng)期從事光譜、光電以及光譜成像等國(guó)產(chǎn)分析儀器的自主研發(fā), 25年來始終以客戶的需求作為出發(fā)點(diǎn),與科研院所和高等教育研究機(jī)構(gòu)建立了緊密無間的合作,為眾多科研用戶提供解決方案。針對(duì)紅外光譜測(cè)量中對(duì)信噪比、光通量,光譜范圍等高性能的需求,推出了多種機(jī)型的傅里葉變換紅外光譜儀,能夠?qū)崿F(xiàn)對(duì)包括液體、固體、氣體等樣品在近紅外、中紅外、遠(yuǎn)紅外波段(12800~50cm-1)寬光譜范圍實(shí)現(xiàn)高光譜分辨(1~0.25cm-1)的紅外光譜測(cè)量 (具體請(qǐng)關(guān)注相關(guān)機(jī)型)。
Zolix FI-RXF200研究型傅里葉變換紅外光譜儀, 擁有優(yōu)于 0.25cm-1 光譜分辨率、光譜范圍可擴(kuò)展到 12800~350cm-1, 可選擇光源和檢測(cè)器的自動(dòng)切換,同時(shí)兼容各種內(nèi)置、外置型附件,能夠滿足科研用戶多種不同的原位紅外測(cè)量需求。
Zolix FI-RIR便攜式紅外拉曼一體機(jī)專門應(yīng)用于突發(fā)性事故現(xiàn)場(chǎng)、爆炸事件、化學(xué)事故現(xiàn)場(chǎng)、衛(wèi)生醫(yī)療、地震、火災(zāi)、實(shí)驗(yàn)室未知物檢、重大污染事故和*端環(huán)境中,是一種對(duì)各種未知化學(xué)物質(zhì)進(jìn)行現(xiàn)場(chǎng)采樣、快速定性分析的高度一體化的光譜鑒定儀,它可以在數(shù)秒鐘之內(nèi)對(duì)固體、液體、粉末狀、粘稠狀等樣品進(jìn)行快速定性分析。
相關(guān)產(chǎn)品
免責(zé)聲明
- 凡本網(wǎng)注明“來源:化工儀器網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡(luò)有限公司-化工儀器網(wǎng)合法擁有版權(quán)或有權(quán)使用的作品,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:化工儀器網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。
- 本網(wǎng)轉(zhuǎn)載并注明自其他來源(非化工儀器網(wǎng))的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個(gè)人從本網(wǎng)轉(zhuǎn)載時(shí),必須保留本網(wǎng)注明的作品第一來源,并自負(fù)版權(quán)等法律責(zé)任。
- 如涉及作品內(nèi)容、版權(quán)等問題,請(qǐng)?jiān)谧髌钒l(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。